
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH2058 Honours Mathematical Analysis I
Suggested Solutions for HW3

1. Suppose (xn) is a bounded sequence of real numbers. Define

(a) L1 := supn∈N infk≥n xk;

(b) L2 := sup {w ∈ R : xm < w for at most finitely many m};
(c) L3 := inf S where S denotes the set of sub-sequential limit of (xn).

Show that L1 = L2 = L3.

Solution. We first show that L1 = L2. Let

W = {w ∈ R : xm < w for at most finitely many w}.

Then we want to show that L1 = supW . We first show that L1 is an upper bound
of W . Let w ∈ W . Then by definition xm < w for at most finitely many m.
Equivalently, this means there is an Nw ∈ N such that for all k ≥ Nw, w ≤ xk. So
we have

w ≤ inf
k≥Nw

xk ≤ xk.

Then taking supremum over Nw, we also have that w ≤ L1. Now let ε > 0. We now
want to show that L1 − ε ∈ W . By definition of L1, there is an Nε ∈ N such that
for any k ≥ Nε, we have

L1 − ε < xk.

Then there are only at most finitely many m such that xm < L1− ε and so L1− ε ∈
W . So L1 = L2.

We now show that L2 = L3. We first show that L3 is an upper bound ofW . Suppose
not, then there is an w ∈ W such that L3 < w, i.e. there is an ℓ < w such that
there is a subsequence (xnk

) of (xn) with lim
k→+∞

xnk
= ℓ < w. But then this gives

infinitely many k such that xnk
< w, contradicting the fact that w ∈ W . So L3

must be an upper bound of W . Let ε > 0. Then we finally want to show that
L3− ε ∈ W , that is, we want to show that xm < L3− ε for at most finitely many m.
Suppose not, then there is a subsequence (xnm) of (xn) with xnm < L3 − ε. Since
this subsequence is bounded, by the Bolzano-Weierstrass Theorem, it contains a
convergent subsequence xnmk

→ ℓ, say. Since taking limits preserves order, we have
ℓ < L3− ε, but we have found a sub-sequential limit of xn which is strictly less than
L3 a contradiction. Hence L3 − ε ∈ W and we conclude that L2 = L3 as well. ◀

2. Suppose (xn) is a sequence of positive real number. Show that

lim sup
n→+∞

x1/n
n ≤ lim sup

n→+∞

xn+1

xn
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Solution. Let u := lim sup
n→+∞

xn+1

xn

. Note that since xn > 0 for each n, u > 0. Using

the definition of lim sup
n→+∞

an := infn supk≥n ak for the sequence
xn+1

xn

, we have that for

all ε > 0, there is an n ∈ N such that

xk+1

xk

≤ u+ ε.

Then we have that

xk

xn

=
xn+1

xn

xn+2

xn+1

· · · xk

xk−1

=
k−1∏
j=n

xj+1

xj

≤ (u+ ε)k−1−n.

So we have that

xk ≤ (u+ ε)k−1−nxn ⇔ x
1/k
k ≤

(
xn

(u+ ε)1+n

)
(u+ ε).

Then since a1/k → 1 as k → +∞, taking k → +∞, we have that

lim sup
k→+∞

x
1/k
k ≤ u+ ε.

Since ε was taken arbitrarily, we have the desired result.

To show an example of strict inequality, consider the sequence

xn =

{
1, n even

2, n odd
.

Then
xn+1

xn

is either
1

2
or 2, and so lim sup

n→+∞

xn+1

xn

= 2, but lim sup
n→+∞

x
1/n
n = 1. ◀

3. Show that if (xn) is a unbounded sequence, then there exists a subsequence (xnk
)

such that x−1
nk

→ 0 as k → +∞.

Solution. Since {xn} is unbounded, for any M > 0, we can find an n ∈ N such that
|xn| > M . We construct the desired subsequence by induction. By unboundedness,
we pick n1 ∈ N such that |xn1| > 1. We then pick n2 ∈ N such that

|xn2| > max{2, |x1|, |x2|, . . . , |xn1|},

so that

∣∣∣∣ 1

xn2

∣∣∣∣ < 1

2
and n2 > n1.

Now suppose n1 < n2 < · · · < nk are chosen so that

∣∣∣∣ 1

xnℓ

∣∣∣∣ < 1

ℓ
for 1 ≤ ℓ ≤ k. Then

we pick nk+1 ∈ N so that

|xnk+1
| > max{k + 1, |x1|, |x2|, . . . , |xnk

|}

then by the inductive hypothesis, we have that

∣∣∣∣ 1

xnk+1

∣∣∣∣ < 1

k + 1
and that nk+1 > nk.

Then the subsequence we have produced has limit 0 by the Squeeze theorem. ◀
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4. Suppose every subsequence of (xn) has a subsequence converging to 0, show that
xn → 0.

Solution. Suppose for the sake of contradiction that xn does not converge to 0.
Then there is an ε0 > 0 such that for all n ∈ N there is an nk ≥ n with

|xnk
| ≥ ε0.

Note that nk may not be increasing with respect to k (and hence (xnk
) is not actually

a subsequence. However, we can pick out an increasing sequence by inductively
defining m1 = n1 and mk = nmk−1

. Then by construction mk > mk−1 and the
subsequence (xmk

) does not converge to 0. But this contradicts the fact that xmk

contains a subsequence that does converge to 0, and hence we are done. ◀

5. If x1 < x2 and xn =
1

4
xn−1 +

3

4
xn−2 for n > 2. Show that (xn) is convergent. Find

its limit.

Solution. Note that

|xn+2 − xn+1| =
∣∣∣∣14xn+1 +

3

4
xn − xn+1

∣∣∣∣ = ∣∣∣∣(−3

4

)
(xn+1 − xn)

∣∣∣∣ .
So (xn) is a contractive sequence and hence is Cauchy and is convergent. We have

xn+2 − xn+1 = −3

4
(xn+1 − xn) =

(
−3

4

)2

(xn − xn−1) = · · · =
(
−3

4

)n

(x2 − x1)

Summing up the expression, we have

n∑
k=0

(xk+2 − xk+1) = (x2 − x1)
n∑

k=0

1−
(
−3

4

)n+1

1−
(
−3

4

)
xn+2 − x1 =

4

7
(x2 − x1)

(
1−

(
−3

4

)n+1
)
.

Taking n → +∞ and since lim
n→+∞

(
−3

4

)n+1
= 0, we have

lim
n→+∞

xn+2 = x1 +
4

7
x2 −

4

7
x1 =

3

7
x1 +

4

7
x2.

◀

6. Let p ∈ N, give an example of sequence (xn) that is not Cauchy but satisfies
|xn+p − xn| → 0 as n → +∞.

Solution. Let xn :=
1

1
+

1

2
+ · · ·+ 1

n
which is not Cauchy because it is divergent.

But we have that for any p ∈ N, we have

0 < xn+p − xn =
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ p
≤ p

n+ 1

and lim
n→+∞

p

n+ 1
= 0, so by the Squeeze Theorem, |xn+p − xn| → 0 as n → +∞. ◀


